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ABSTRACT

The concept of gravity tectonics is applied to reveal the major clue as to the

conditions which result in the correspondence of seismic and tectonic gaps in the

mantle. An asymptotic theory is developed for the calculation of the thrust and

moment when a descending lithospheric plate encounters resistance to its down-

ward motion in the mesosphere. Dynamic analysis falls into two parts: (1) de-

riving equations for forces in the descending lithosphere, (2) deducing moment

distribution which causes the detachment of lithosphere. For the analysis of

forces a mathematical theory of shells is given. In order to determine the de-

tachment mechanism, solutions of equations are obtained by asymptotic integra-

tion. It is found that a thrust No coupled with a moment MO due to gravitational

forces generated by density contrast may play a key role in the initial detach-

ment of a piece of descending lithosphere. The results are in agreement with

the observed seismic gaps beneath South America, Toga-Fiji, New Zealand and

New Hebrides regions.
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INTRODUCTION

Observations of the variations in attenuation and velocity of seismic

waves beneath island arcs (Barazangi, et al.,.1973; Isacks and Barazangi, 1973;

Pascal, et al., 1973; Stauder, 1973) have revealed remarkable gaps in seismicity.

These gaps are of interest because of the implication that portions of the litho-

sphere can break-off from the descending plate and exist as isolated slabs in the

mantle. Although the existence of isolated lithospheric slabs is a natural expla-

nation of much of the data on which seismic gaps are based, the dynamic aspects

of detachment of these slabs are unknown. The present paper is devoted to study-

ing the tectonic setting of seismic gaps beneath island arcs.

In this paper a model of gravity tectonics (Hales, A. L., 1969; Jacoby,

1972) is developed to explain conditions under which the correspondence of gaps

in seismicity and tectonics may occur. Computation of the gravity effect of the

downgoing lithosphere beneath island arcs (Elsasser, 1969; Isacks and Molnar,

1971) is complicated by its material properties. In order to obtain the first

approximation, the density contrast between the descending lithosphere and

surrounding asthenosphere is assumed to be uniform (Oxburgh and Turcotte,

1970) and the underthrusting plate is assumed to be elastic to maintain its shape

(Sykes, 1966; McKenzie, 1969; Liu, 1973; Watts and Talwani, 1974). Analysis

of the edge effect of thrust and moment (Love, 1944; Girkmann, 1956) due to

gravitational body forces reveals a major clue for the initial detachment of de-

scending lithosphere.
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EQUATIONS OF THE PROBLEM

Several studies on the thermal regimes of downgoing slabs have been

carried out using different models and techniques. (Turcotte and Oxburgh, 1968;

McKenzie, 1969, 1970; Minear and Toksoz, 1970; Hasebe, et al., 1970; Griggs,

1972; Toksoz, et al., 1971, 1973) In addition to heat conduction from the sur-

rounding mantle, the slab is heated by internal heat sources. These consist

of radioacticity, phase changes, shear heating and adiabatic compression.

Ideally, we would like to be able to specify the properties of the mantle

and solve the time-dependent equations of deformation for the descending slabs,

including the effects of temperature and pressure dependent parameters

and internal heat sources. This task is analytically impossible and presents

formidable problems numerically. Furthermore, it may well be that unless

simpler models are first understood, complex cases would not be interpret-

able in terms of the contribution to the dynamics that each case provides. It

seems necessary, and perhaps even desirable, to consider relatively simple

model problems.

Assumptions and simplifications, common to all model problems, are

required to obtain a tractable set of governing equations of detachment for the

descending slabs in the mantle. We seek to generate models sufficiently simple

to be solvable but which retain the main elements of the dynamics of the litho-

spheric detachment. One of the serious assumptions in tectonic plate theory is



5

the rigidity of the plate. Its validity needs to be justified by the first order of

approximation of the dynamical principle of deformable bodies. In this model,

the descending slab is considered to be elastic, but the role of internal heat

sources and phase boundaries are not considered. The temperature and pressure

influences on the mechanical properties of the slab are not included within the

scope of this paper. Linearized density in the slab and in the asthenosphere is

assumed. The mesosphere, lying below 600 km depth, is assumed to be more

dense than the asthenosphere, but no specific values for density are required.

The assumed density contrast of about 0.05 g cm 3 between the slab and its sur-

rounding asthenosphere is the dominant feature of this model. These assumptions

and simplifications, which impose limitations in representing the geophysical

problem, lead to analytical solutions of the model that can be confirmed by ob-

servations of the tectonic plates.

Let us consider an element cut from the outer shell of the earth by two

adjacentmeridian planes and two sections perpendicular to the meridians (Fig. 1).

In a axisymmetric shell the following resultant forces and moments per unit length

occur: (1) in the cross-section ¢ = constant: No, Q0 and Mo, (2) in the cross-

section 0 = constant: No and Mo. The stresses can be reduced to the resultant

force Nor, do and resultant moment M0 r, de. The side of the element perpendic-

ular to the meridians which is defined by the angle ¢ is acted upon by normal

stresses which result in the force Ncr 2Sinod0 and the moment M r 2 Sind08 and
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by shearing stresses which reduce the force Qor 2Sind0O normal to the shell.

The three equations of equilibrium are (Love, 1944; Girkmann, 1956)

d (Nro) - No0 r cos 4 - Qr o 
= 0

d

Noro +N0 r i sin + - (Qor o ) = 0 (1)

d
S(Mro) - Mr cos 0 - Qrorr = 0

in which the resultant forces NO, N., shearing force Q and resultant moments

MO and M0 are five unknown quantities. The number of unknowns can be reduced

to three if we express N 0 , NO, MP and M0 in terms of the components V and W

of displacement (Fig. 2). The strain components of the middle surface of the

element are

1 dV W V W
S- e cot - (2)

r de r r r2

from which, by Hook's law, we obtain

N - - W) +- (V cot -W)
1 - v 2  l r 2

(3)
Eh F1 v dV

No - (Vcot -W)+- - -W
1 - 2  12 r 1 d

Where E is modulus of elasticity, h is the thickness of the shell and v is

Poisson's ratio.

To obtain similar expressions for M0 and Me, we consider the changes

of curvature of the shell element. Considering the upper and lower side of that



element, the initial angle between these two sides is do. Because of the dis-

placement V along the meridian, the upper side of the element rotates with

respect to the perpendicular to the meridian plane by the amount V/r . As a

result of the displacement W, the same side further rotates about the same axis

by the amount dW/(r 1 do). Hence, the total rotation of the upper side of the ele-

ment is V/r 1 + dW/(r l d ). For the lower side of the element the rotation is

V dW d /V dW- +- + - +- do
r, r i do d r r d

Therefore, the change of curvature of the meridian is

I d (V dW

To find the change of curvature in the plane perpendicular to the merid-

ian, we observe that the normal to the right lateral side of the element makes

an angle ir/2-cos 0 dO with the tangent to the y-axis. Therefore, the rotation of the

right side in its own plane has a component with respect to the y-axis equal to

V dW
- - + - cos d0

r1  ri do

This results in a change of curvature

O=(V+ dW coto 5
X0 =( + (5)

r dd r2

Using equations (4) and (5), we have

M = -D(X + vX,)

[1 d ( V dW v V dW c (6)
= -D - -- + - + -- + cot

d r, 70 rr2 d r, r I do
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Me = -D(X0 + vX¢)

V+ dW cot v d V dW (6 Cont'd.)
= -D + - +-- +-

S r r2  d ri d,

where the flexural rigidity is

Eh 3
D-

12(1 - v 2 )

Substituting equations (3) and (6) into equation (1), we obtainthree equa-

tions with three unknown quantities V, W and Q . Simplification of these equa-

tions can be obtained by transformation to new variables.

TRANSFORMATION OF EQUATIONS

By using the third equation in (1) the shearing force Q can be elimi-

nated and the three equations reduced to two equations with the unknowns V and

W. Considerable simplification of the equations can be obtained by introducing

new variables. As the first of the new variables, we take the angle of rotation of

a tangent to a meridian. We define this angle by

V dW
S- + -- (7)

r, rI do

As the second variable we take the quantity

U = QO r2  (8)

To simplify the transformation of equations to the new variables, we may

consider the forces in the portion of the shell above the parallel circle defined by



the angle 0. They are governed by

ro sin 0 dO No + ro cos dO Q0 = 0

from which

cot ¢
No - U (9)r

2

Substituting equation (9) into the second of equations in (1), we find

1 dU
No = (10)

r1 do

Thus, N. and No are both expressed in terms of U which is dependent on Q as

defined by equation (8).

To establish the first equation connecting 'D and U, we use equation (3)

from which we obtain

dV r1
-W = (Np - N ) (11)

VEcothW (NO - v N) (12)

By eliminating W from equations (11) and (12), the result is

dV 1
- V cot I [(r + v r 2)N - (r 2 + v r1)N0 ] (13)

Differentiation of equation (13) with respect to 0 gives

dV V dW d r )(14)
cot d d 2 (No - v No ) (14)

do sin2 0 do do Eh
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By eliminating dV/d4 from equations (13) and (14), the result is

IP dW)
4 - V +-

rI  d

cot 0
Scote [(r, +v r 2)N - 2 (r +  r )N (15)

- r _ d [r2 (No - v N)]
Eh r do

Substituting equations (9) and (10) in (15), we obtain the following equa-

tion relating to 4P and U.

r2 d2U 1 d r r2 2 dh dU
+ - +2 cot ¢ -

r, 2 d02 r r r I  rh do do
(16)

1 r v dh
- r cot 2 +- cot - vU = Eh 4

S r h doe

The second equation relating to 4 and U is obtained by substituting

equations (6), (7) and (8) in the third of the equations in (1). In this way we find

r2 d2U 1 d r r 2  2 dh] dU
-- +- +- cot o + 3I

r1
2 d02  

1  d r 1 r rh do do

(17)
1 (r 3v dh U

- cot2 - - cot + P -
r2 h do D

Therefore, the problem of the membrane tectonics (Turcotte, 1974) of the under-

thrusting shell is reduced to the integration of equations (16) and (17). For the

case of constant thickness, the terms containing dh/dO as a factor vanish, and

the derivatives of the unknowns 4 and U in both equations have the same coeffi-



cients. By introducing the notation

( r2 d2 1 d r2
)1+ !+ cot]±

r (X) = 0dr2 1 d r do

- r-2-- (X) 
(18)

equations (16) and (17) can be represented in the following simplified forms:

£(U)+- U = Eh'F (19)
r
1

v U
x(D)- - 4 - (20)

r1  D

Performing the operator £ on equation (19) gives

££C(U) + v () = Eh £ (D) (21)

Substituting equation (19) into (20),

v U v V U
£ (Q) = D 1- Eh (U) + - U

r D r Eh r, D

we obtain

x() ) v V2  Eh

££(U)+v _ -£(U)- - U- U (22)
ri r 2  D

If the radius of curvature ri is constant, equation (22) reduces to

£(U) + Eh - 2 U = 0 (23)
£ D r, 2
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ASYMPTOTIC EXPRESSION OF Q0

By introducing, instead of the shearing force Q0, the new variable

7 = QO sin /2  (24)

equation (23) becomes

d4 r d2,r dT
+ C2 + C1 - + (4 X4 + C ) 7 = 0 (25)

d 4  d02 dO

in which

63 9 9
C- + +-

16 sin 4  8 sin 2 k 10

3 cos ¢
C1 -

sin3

3 5
C - +-2 2 sin2  2

1 - v2  12a
2- 4  \ 12

42 k h2 +

In the derivation of equation (25), r I = a is assumed. For the case of under-

thrusting plate, a 10 3 km and h a 102 kin, a/h can be regarded as large.

Therefore, the value of 4X4 is very large in comparison with the coefficients

Co, Ct and C2 , provided the angle ¢ is not small. Since we shall be interested

in moments in the leading part of the underthrusting plates in the mesosphere

where 0 r y and y is not small, we can neglect the terms with the coefficients

Co, C1 and C 2. In this way we obtain the equation

d4r
+ 4X 4 r = 0 (26)

de
4
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The general solution of equation (26) together with equation (24) gives

Q0 = sin '/2 0 [eo (k i cos X + k2 sin NO)
(27)

+ e-X0 (k3 cos X + k4 sin Xo)j

where k, , k2 , k3 and k4 are the constants of integration. They must be deter-

mined from the conditions at the leading part of the descending plate. Since the

moments produced by forces on the edge of a shell decrease as the distance from

the edge increases (Love, 1944; Girkmann, 1956), itis permissible to take only

the first two terms in equation (27) and assume

Q e = J sin 2 0 (ki cos XO + k2 sin X¢) (28)

Similar mathematical analysis shows that q has the same oscillatory

character.

APPROXIMATE SOLUTIONS

As a basis of an approximate investigation of the bending of the under-

thrusting plates, we take equations (19) and (20). For this purpose, these equa-

tions can be written as follows:

d2 Q dQ¢
+ cot 1 -(cot 2 - ) Q  = Eh 4 (29)

d0 2  dO

d2 'F d4 a 2 QO
+ cot 0 - - (cot 2 0 + V) q)= -(30)

de2  de D

Q0 and qF have the same oscillatory character as shown in equation (28)

and are damped out as the distance from the leading edge of the plate increases.
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Since X is large, the derivative of equation (28) is large in comparison with the

function itself and the second derivative is large in comparison with the first.

This indicates that a satisfactory approximation can be obtained by neglecting the

terms containing the functions Q0 and 4) and their first derivatives in the left-hand

side of equations (29) and (30). Therefore, they can be replaced by the following

simplified system of equations

d2
= Eh D (31)

d2C4 a2

- Q (32)
de2 D

By eliminating CP from these equations, the result is

d04

where

a 2

04 = 3 (1 - v22 )

h2

The solution of equation (33) for our problem is

Q0 = K, e cos o3 + K2 e sin go (34)

K, and K2 are to be determined from conditions at the leading part of

the plate. In discussing the edge conditions, it is advantageous to introduce the

angle J = 7 -0. Substituting y- for ¢ in equation (34) and using the new constants

K and a, we can represent equation (34) in the form

Q0 = K e- sin (0f + a) (35)
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Now, employing equation (9), we find

N = - K cot (7 - ) e-P' sin (, + a) (36)

Substituting equation (35) in equation (31), we obtain the angle of rotation

232
4 - K e- 0 cos (0 + a) (37)

Eh

The moment M can be determined by introducing equations (7) and (37)

in (6). Neglecting the terms containing 4 in these equations for r, = r2 = a, we

find

D d4

- a d

(38)

- Ke - 'J sin( / P+ +

With the aid of equations (36), (37) and (38), the model of gravity tec-

tonics for the detachment of descending lithosphere can readily be treated.

CALCULATIONS

In order to calculate No and Me in the underthrusting plates, we must

determine the constants K and a in equations (36) and (38). This can be done by

applications of force analysis (Fig. 3). According to the suggestion made by

Elsasser (1969) and Isacks and Molnar (1971), the lithospheric plate is sinking

under island arcs and exerting a downward gravitational pull. When the sinking

lithosphere reaches the more dense, stronger methosphere region below the
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asthenosphere, downdip compression is evidenced in the earthquake patterns

(Isacks and Molnar, 1971). This suggestion requires a positive density contrast

Ap of the sinking plate which is about 0.02 to 0.06 g cm - 3 as estimated by Jacoby

(1970) and by Oxburgh and Turcotte (1970). Such an estimation is supported by

the observed gravity anomalies (Hatherton, 1969). Satellite gravity (Kaula, 1972)

has the resolution to show the positive anomalies related to the oceanic trenches.

To estimate the buoyant force on the plate, we consider the case of a plate with

edge thrusting in the mesosphere and subject to the action of gravity. The

vertical force is W = AApg r (£h/Siny) Apg, where A is the volume per unit length

along the strike, Q is the depth of the leading edge of the descending lithosphere,

h is its thickness and y is the dip of the plate measured from horizontal. The

force F represents a push from the ridge due to the elevation of the ridge associ-

ated with ascending convection beneath the ridge and a horizontal traction on the

base of the lithosphere due to convection in the upper mantle. If the descend-

ing plate is uncoupled from the horizontal lithosphere by vertical faults, no ten-

sile force could be exerted directly on the horizontal plate from the descending

one. If the tension is compensated by compression from the ridge (Jacoby, 1970),

the component S = WSiny parallel to the inclined plate may be in equilibrium with

a vertical supporting force G and a horizontal thrust H in the mesosphere. This

estimate is not yet complete. When the plate continues to dip into the more vis-

cous and denser mesosphere due to force F, the resistance is likely to grow
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rapidly, and the leading edge of the plate encounters a resistance (NO)O = I

which may be greater than S. Hence, for this case, we have two boundary

conditions

(Np)o = > RhApg
(39)

(M¢) =, = 0

By substituting i = 0 in equation (38) it can be seen that the second

boundary condition in equation (39) is satisfied by taking the constant c = - r/4.

To satisfy the first boundary condition, we use equation (36) which gives

K hApg
sin (7r/4) cot 7

Substituting the values of the constant K and a in equation (38), the

result is

a hApg e sin (1i) (40)
M cot7

For Q = 600 km, h = 100 km, Ap = 0.05 g cm-3 , g = 103 cm sec - 2 , a = 1200 km, and

y = 45', = 4.45, we obtain

(N)¢ = 7 > 3.5 x 1016 dyn cm - ' (41)

(M¢)o = Y > 8.4 x 1023 e- (7 -0) sin (y - 0) dyn - cm cm"  (42)

The corresponding values of Me from equation (42) are shown in Fig (4).

In Fig (4) the maximum moment of body forces due to gravity generated by den-

sity contrast occurs at 0 = 360. This implies that the thrust (N,), = Y coupled
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with the bending moment Me may provide a mechanism for the initial detachment

of the descending lithosphere plate at a depth of about 460 kmn. Under the influ-

ence of the bending moment, M, curve represents the curvature of the plate.

This analytical result reveals that the lithosphere breaks up but does not sink

vertically along en echelon vertical fault as shown in Figure 4. The earthquake

distribution beneath the New Hebrides are as obtained by Dubois (1971) is illus-

trated in Figure 5. The horizontal extent of the deep earthquakes in Figure 5

suggest that the detachment of the slab is controlled by the gravitational bending

moment due to density contrast. Therefore, the gravitational bending moment,

M0, may provide an explanation for the similarity among the seismic and tectonic

gaps beneath the South American, Tonga-Fiji, New Zealand and New Hebrides

Island arcs as observed by Isacks and Barazangi (1973), Stauder (1973), Pascal,

et al. (1973), Barazangi, et al. (1973) and Isacks and Molnar (1971). If this

similarity is not fortuitous, the analytical solutions of this model are probably

relevant to the geophysical problem. Previous studies (Toksoz, et al., 1973;

Liu, 1973) lack the understanding of the detachment mechanism. This geophysi-

cal phenomenon is, however, not unexpected if the elastic model of gravity tec-

tonics developed in this paper is accepted.

CONCLUSION

Seismic observations provide important information of the deep-seated

gaps along converging plate boundaries. These gaps must be examined with

studies of the tectonic plate deformation to determine whether the results of
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seismic observations are consistent with simple tectonic plate models. In this

paper a mathematical model of gravity tectonics to explain and predict the seis-

mic gaps in the mantle is developed. The results of the analysis are formulated

by equation (36), (37) and (38). Numerical calculations lead to equation (42) and

Figure 4. It is shown that the thrust coupled with a moment of body forces due

to gravity on the leading portion of the underthrusting plate may play a key role

in the initial detachment of a piece of descending lithosphere. Furthermore, the

tectonic setting of seismic gaps presented in this paper reveals the clue as to

the conditions under which they occur and the regional motions, forces and mo-

ments which must be responsible for their occurrence.
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FIGURE CAPTIONS

Figure 1. Forces in a Plate Element

Figure 2. Displacements in Plate

Figure 3. Force Diagram

Figure 4. Distribution of Moment Me Due to Gravitational Forces

Figure 5. Vertical Cross Section Perpendicular to the New Hebrides Arc

Showing Earthquake Distribution Beneath the Arc and in the Detached

Slab
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